
Sigmoid: ASIC-resistant Mineable KIP-7 Token

John Weligon
Electrical and Computer Engineering Dept.

sigmoid.token@gmail.com

I. INTRODUCTION

The advent of gigantic mining pools has long been a
headache for a cryptocurrency field. Due to the possibility of
51% attack and block withholding attack, the very existence
of the gigantic mining pools was one of the biggest threats
to the security of proof-of-work cryptocurrencies. Not only in
terms of security but also in terms of energy efficiency were
those mining pools a nuisance. It is known that the process
of creating Bitcoin to spend or trade consumes around 91
terawatt-hours of electricity annually, more than is used by
Finland, a nation of about 5.5 million.

Various technical attempts have been made to solve this
problem. One of them was to switch the consensus mechanism
to proof-of-stake. Ethereum, which Sigmoid is going to be
based on, is an example of cryptocurrency that is planning a
switch from PoW to PoS mechanism. Though this changeover
of the consensus mechanism can effectively alleviate the
aforementioned issues, to miners can the whole changeover
be seen as ’being thrown away like an old shoe.’

To miners, mineable ERC-20 tokens like 0xBitcoin
were great substitutes for cryptocurrencies preparing for a
changeover. The move was faster than expected. In the case
of 0xBitcoin, the hash rate is already enormous 100Th/s. This
is because there was an influx of miners from traditional
cryptocurrencies. While the competition between 0xBitcoin
miners is already fierce, the biggest drawback that wasn’t
revealed yet is that 0xBitcoin is prone to ASIC mining. This
is because hashing algorithm used in 0xBitcoin, keccak-256,
is not memory-hard and ASIC-friendly. If ASIC miners jump
into the mining pool, the mining difficulty and the competition
between miners will skyrocket.

Therefore, we bring another older attempt for decentraliza-
tion: to use an ASIC-resistant hashing algorithm for proof of
work. For example, Scrypt and Ethash, which were known
to be GPU-friendly and ASIC-resistant, were respectively
selected as a hashing algorithm by Litecoin and Ethereum.
Those memory-hard hashing algorithms demonstrated their
effectiveness for a long period though ASIC modules for those
algorithms have now been developed and commercialized.

In this paper, a new ASIC-resistant KIP-7 token with a
relatively new memory-hard hashing algorithm, Sigmoid is
presented. For minting, Sigmoid uses Balloon hashing for
its key derivation function, which is a NIST-recommended
algorithm theoretically proven to be memory-hard. In this
way, we expect to achieve thorough decentralization and
bring about short-term energy-efficiency and equality through
incapacitation of ASIC miners.

II. WHAT IS KIP-7?

Klaytn is an enterprise-grade, service-centric platform de-
veloped by Kakao, Korea. Klaytn, the currency running on the
platform, is the 39th largest cryptocurrency in crypto market
capitalization. KIP-7 is a fungible Klaytn Compatible Token
(KCT) that has properties of uniformity and divisibility, which
is very similar to ERC-20 from Ethereum.

The difference of KIP-7 from ERC-20 is that every token
transfer/mint/burn must be tracked by event logs. This means
that a transaction must be emitted for any action related to
transfer/mint/burn. Another difference from ERC-20 is that the
KIP-13 interface for each method group must be implemented.
KIP-13 is a standard that defines a method to query whether
a contract implements a certain interface or not.

III. DIFFICULTY ADJUSTMENT AND REWARDING SYSTEM

A. Difficulty adjustment

Overall difficulty adjustment system of Sigmoid follows
Digishield, the system originally used in Digibyte and adopted
in Dogecoin. DigiShield is designed to solve ”chain freezing”
problem. If the mining difficulty becomes higher, as miners
hop between various cryptocurrencies with their mining, a
relatively new currency would end up with a ”frozen” chain,
where it takes too long to find a block. In order to prevent such
a situation from happening, Digishield lets the difficulty ”fall”
very fast so that the miners from other currencies would come
again to begin mining. Though Sigmoid doesn’t need to worry
about the ”chain freezing” problem, Digishield was adopted
in order to prevent the mining difficulty from being too high.

The rate of block creation is adjusted every 64 blocks to
aim for 1 block creation per 600 Klaytn blocks, which is
roughly 6 blocks per hour. All difficulty targets are bound
within minimum and maximum difficulties of 216 and 2234

respectively.

B. Rewarding system

Just like 0xBitcoin, maximum total supply of Sigmoid is
21 million tokens and the amount of SIG issued per block is
set to decrease logarithmically, having a 50% reduction every
time half of the remaining supply has been mined. In result,
total supply of Sigmoid will never exceed 21 million.

The reward halving occurs when the reward era increases.
The reward era increases if the tokens minted count has
exceeded the maximum era supply which is calculated via
the Eq. (1).

max era supply = total supply − total supply
2reward era+1

(1)



IV. HASHING ALGORITHM

Sigmoid uses Balloon hashing for its key derivation func-
tion. Balloon hashing is a NIST-recommended key derivation
algorithm which is theoretically proven to be memory-hard.
Memory-hardness of this particular key derivation function
enables Sigmoid to be ASIC-resistant. [2]

Another strength of Balloon hashing other than memory-
hardness is its versatility. Since Balloon hashing is only a key
derivation algorithm, it can use almost every hash function for
its hashing / pseudo-random-number generation processes. By
using hash functions that are already built in Solidity API, it is
possible to reduce the gas consumed for validation of mining
results. In the case of Sigmoid, the hash function is SHA-256.

A. Balloon Hashing

Like 0xBitcoin, to prevent pre-mining and Man-in-the-
Middle attack, the digest of Sigmoid’s hash function includes
a recent Ethereum block hash and msg.sender’s address. In
addition, the digest also includes another variable named cnt
to secure memory-hardness. cnt increases gradually as the
hashing process continues and helps mixing the hash blocks.

func Balloon(block_t nonce,
block_t salt, // previousBlockHash, msg.sender
int s_cost, // Space cost (main buffer size)
int t_cost): // Time cost (number of rounds)

int delta = 3 // Number of dependencies per block
int cnt = 0 // A counter (used in security proof)
block_t buf[s_cost]): // The main buffer

// Step 1. Expand input into buffer.
buf[0] = hash(cnt++, salt, nonce)
for m from 1 to s_cost-1:

buf[m] = hash(cnt++, buf[m-1])

// Step 2. Mix buffer contents.
for t from 0 to t_cost-1:

for m from 0 to s_cost-1:
// Step 2a. Hash last and current blocks.
block_t prev = buf[(m-1) mod s_cost]
buf[m] = hash(cnt++, prev, buf[m])

// Step 2b. Hash in pseudorandomly
// chosen blocks.
for i from 0 to delta-1:

block_t idx_block = ints_to_block(t, m, i)
int other = to_int(hash(cnt++, salt,

idx_block)) mod s_cost
buf[m] = hash(cnt++, buf[m], buf[other])

// Step 3. Extract output from buffer.
return buf[s_cost-1]

In the case of Sigmoid, s cost was set to 218/32 to make the
size of buf array 260KB, which is double of another hashing
function Scrypt. t cost and delta were set to 3. If the hashing
costs too much, the parameters can be changed through owner-
only function.

B. Switching hashing function

The drawback of using Balloon hashing for validation is that
Balloon hashing process takes up too much gas. If the situation
goes wrong, the price for minting will be more expensive than
the value of the minted Sigmoid tokens. To prevent such a

situation from happening, the owner, the developer in other
words, has the authority to switch the hashing function from
Balloon hashing to Keccak-256 and vice versa. If the gas price
becomes too high, the hashing function will be changed to an
easier one (Keccak-256) for convenience.

REFERENCES

[1] https://github.com/0xbitcoin/white-paper-v2
[2] Boneh, Dan, Henry Corrigan-Gibbs, and Stuart Schechter. ”Balloon

hashing: A memory-hard function providing provable protection against
sequential attacks.” International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer, Berlin,
Heidelberg, 2016.

Index Terms—ASIC-resistant, mineable, ERC-20, Ethereum,
PoW


